Dynamics of Lattice Triangulations on Thin Rectangles
نویسندگان
چکیده
We consider random lattice triangulations of n×k rectangular regions with weight λ|σ| where λ > 0 is a parameter and |σ| denotes the total edge length of the triangulation. When λ ∈ (0, 1) and k is fixed, we prove a tight upper bound of order n for the mixing time of the edge-flip Glauber dynamics. Combined with the previously known lower bound of order exp(Ω(n)) for λ > 1 [3], this establishes the existence of a dynamical phase transition for thin rectangles with critical point at λ = 1.
منابع مشابه
A Lyapunov function for Glauber dynamics on lattice triangulations
We study random triangulations of the integer points [0, n] ∩ Z, where each triangulation σ has probability measure λ|σ| with |σ| denoting the sum of the length of the edges in σ. Such triangulations are called lattice triangulations. We construct a height function on lattice triangulations and prove that, in the whole subcritical regime λ < 1, the function behaves as a Lyapunov function with r...
متن کاملAn upper bound for the number of planar lattice triangulations
We prove an exponential upper bound for the number f(m,n) of all maximal triangulations of the m × n grid: f(m,n) < 2. In particular, this improves a result of S. Yu. Orevkov [1]. We consider lattice polygons P (with vertices in Z), for example the convex hull of the grid Pm,n := {0, 1, . . . , m} × {0, 1, . . . , n}. We want to estimate the number of maximal lattice triangulations of P , i.e.,...
متن کاملJa n 20 06 BALANCED TRIANGULATIONS OF LATTICE POLYTOPES
Regular triangulations of products of lattice polytopes are constructed with the additional property that the dual graphs of the triangulations are bipartite. Such triangulations are instrumental in deriving lower bounds for the number of real roots of certain sparse polynomial systems by recent results of Soprunova and Sottile (Adv. Math., to appear). Special attention is paid to the cube case.
متن کاملA ug 2 00 5 BALANCED TRIANGULATIONS OF LATTICE POLYTOPES
Regular triangulations of products of lattice polytopes are constructed with the additional property that the dual graphs of the triangulations are bipartite. Special attention is paid to the cube case. Such triangulations are instrumental in deriving lower bunds for the number of real roots of certain sparse polynomial systems by recent results of Soprunova and Sottile [21].
متن کاملHitting and Piercing Rectangles Induced by a Point Set
We consider various hitting and piercing problems for the family of axis-parallel rectangles induced by a point set. Selection Lemmas on induced objects are classical results in discrete geometry that have been well studied and have applications in many geometric problems like weak epsilon nets and slimming Delaunay triangulations. Selection Lemma type results typically bound the maximum number...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1505.06161 شماره
صفحات -
تاریخ انتشار 2015